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Abstract In order to identify novel inhibitors of the
Helicobacter pylori nickel response regulator (HpNikR)
an integrative protocol was performed for half a million
compounds retrieved from the ZINC database. We firstly
implement a structure-based virtual screening to build a
library of potential inhibitors against the HpNikR using a
docking analysis (AutoDock Vina). The library was then
used to perform a hierarchical clustering of docking poses,
based on protein-contact footprints calculation from the
multiple conformations given by the AutoDock Vina
software, and the drug-protein interaction analyses to
identify and remove potential promiscuous compounds

likely interacting with human proteins, hence causing drug
side effects. 250 drug-like compounds were finally pro-
posed as non-promicuous potential inhibitors for HpNikR.
These compounds target the DNA-binding sites of HpNikR
so that HpNikR-compound binding could be able to mimic
key interactions in the DNA-protein recognition process.
HpNikR inhibitors with promising potential against H.
pylori could also act against other human bacterial
pathogens due to the conservation of targeting motif of
NikR involved in DNA-protein interaction.
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Introduction

Helicobacter pylori (H. pylori) is a Gram-negative, micro-
aerophilic, helical-shaped bacterium that colonizes the
human stomach of at least half of the world’s population
[1, 2]. H. pylori has been associated to several diseases
such as chronic gastritis, peptic ulcer disease, and predis-
position to the development of gastric cancer and other
gastric malignancies [1, 2]. A triple combination chemo-
therapy consisting of a proton pump inhibitor and two
antibiotics (either clarithromycin, metronidazole or amoxi-
cillin) has become the election treatment for eradication of
H. pylori [3, 4]. Although the triple combination chemo-
therapy succeeds in 70-90% of the cases [5–9], it may fail
because of the presence of H. pylori antibiotic-resistant
strains [5–11]. The resistant H. pylori strains to clarithro-
mycin, metronidazole, and amoxicillin vary among regions
and countries, but resistant H. pylori strains to metronida-
zole are relatively common worldwide [12, 13]. As resistant
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H. pylori strains to antibiotics may eventually compromise
the effectiveness of current therapy to fight the disease
produced by these resistant strains in humans, the discovery
of potential drugs against H. pylori may help guide the
development of complementary schemes of drug chemo-
therapy [1, 10, 14, 15].

H. pylori bacteria colonize the mucus layer overlaying
the gastric epithelium of humans where the pH is thought to
vary between 4 and 6 with temporary acid shocks of pH∼2
[16, 17]. Thus, the growth of H. pylori in such hostile
environment of the stomach depends on particular physio-
logical mechanisms essential for the bacterial survival.
Specifically, tolerance of H. pylori to acid shocks requires
production of ammonia by urease-mediated degradation of
urea. H. pylori produce large amounts of urease, which is a
nickel dependent enzyme [18–20]. Nickel is essential for
the activity of some enzymes, and its concentrations must
be under strict control because high concentration could be
toxic for the microorganisms [21–25]. Therefore, the
essentialness of nickel homeostatic systems in H. pylori
provides many potential targets for the development of
novel antimicrobial agents. The sensitive mechanism of H.
pylori nickel homeostasis is controlled by nickel-responsive
regulatory protein, NikR (HpNikR), which is a transcription
factor that belongs to the ribbon-helix-helix (RHH) family
of DNA binding proteins [26]. The NikR protein is a
homotetramer; each subunit consisting of an N-terminal
DNA-binding domain, homologous to the Arc/CopG/MetJ/
Mnt family of RHH regulators, and a C-terminal domain
that is required for binding of nickel and for tetramerization
[27–29]. HpNikR is able to regulate multiple genes,
including genes that encode to nickel dependent proteins,
such as NixA, HPN and UreA, as well as genes that encode
proteins that do not use nickel, such as those involved in
iron uptake and storage, motility, stress response, and genes
that encode outer membrane proteins [22, 30]. Moreover,
biochemical, structural, and functional genomics studies of
HpNikR have suggested that HpNikR is a master regulator
of the expression of a cluster of related genes for H. pylori
acid adaptation [24, 31–33]. Therefore, drugs targeting
HpNikR could break the nickel homeostasis to prevent H.
pylori infections [15]. In addition, no NikR homolog exists
in human that makes NikR an ideal target for antibacterial
drugs.

It has recently been suggested that targeting protein-
DNA interactions could serve as a new paradigm of drug
discovery because a single regulatory protein may disrupt,
simultaneously, several physiological processes [34]. The
typical antimicrobial drug design targets active sites of
enzymes that are essential for metabolic process, which
elicits strong selective pressure for resistance development
[35]. Bowser et al. [36] identified potent small-molecule
inhibitors for the AraC family of bacterial transcription

factors. Such compounds targeting regulators may delay the
appearance of resistant bacterial strains. The present work
reports potential inhibitors of HpNikR using an integrative
computational protocol including virtual screening, cluster-
ing analyses of docked poses, and protein-drug interaction
networks. A set of 250 drug-like compounds were selected
as potential inhibitors for HpNikR, which could provide an
opportunity to produce novel drugs targeting the protein
regulator that interacts with DNA in pathogenic bacteria.

Materials and methods

Docking

The AutoDock Vina software [37] (Vina) was used for
flexible docking simulations into DNA binding site of
HpNikR. The coordinates of crystal structure of HpNikR
were downloaded from the Protein Data Bank [38], PDB
code 2CA9 [39], and were setup as the receptor for docking
protocol. Before docking, small ligands and water molecules
were removed manually from the receptor. Polar hydrogens,
Gasteiger charges and Vina configuration file were assigned
using the AutoDock Tools interface [40, 41].

The compound for positive control (as defined below)
was used to determine the size of search spaces on the
DNA-binding site where the docking simulations were
performed. We adapted the method of Troot et al. [37] to
meet this purpose. First, the positive control was placed to
the DNA-binding site of HpNikR. Second, several rounds
of dockings were carried out to increase the size of search
space. Finally, we obtained the optimal search spaces per
each dimension (x, y and z) when the longest space kept the
ligand inside the DNA-binding site. The size of search
spaces in each dimension was of 14 Å and its center of
36.722, 41.543, and 8.499 for x, y and z, respectively.
Thus, the search space was large enough for the ligand to
rotate, as suggested elsewhere [42].

Using the application of Lipinski’s “rule of fives” [43]
(molecular weight<500, partition coefficient logP<5, number
of H-bond donor<5, and number of H-bond acceptor<10)
and the three-dimensional structures in mol2 format, half a
million compounds were extracted from ZINC 8 database
[44]. Therefore, these compounds could be having molecular
properties important for a drug’s pharmacokinetics in the
human body.

Compound library

Bowser et al. [36], found a set of p-amino-substituted
analogs of 1-hydroxybenzimidazole as potent inhibitors of
bacterial transcription factors. In that paper, the compound
named as compound 40 showed the highest in vitro activity
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[36]. Hence, the three-dimensional structure of compound
40 (Table 1) was introduced in the ZINC dataset as
a positive control. The binding energy of the positive control
(-3.45 kcal mol−1) plus the standard deviation in the
predicted binding free energy fromVina force field (-2.85 kcal
mol−1) [37] was set as the cut-off value to select potential
inhibitors. Compounds with high binding-energy values
above the cut-off were considered inactive compounds
(inactive compounds set).

ZINC dataset per compound was prepared as follows:
prepare_ligand4.py python script of AutoDockTools software
[40], used to merge nonpolar hydrogens, add Gasteiger
charges, and set up rotatable bonds for each ligand via
AutoTors. This produces the corresponding pdbqt file format
necessary for Vina. All AutoDockTools python scripts were
embedded into our “in-house” Perl scripts. The Vina default
optimization parameters were used. Thus, the top-binding
energy compounds were selected by using the positive
control binding-energy as the cut-off value.

Clustering analysis of docked poses

The clustering methods applied to the analysis of protein-
ligand interactions have been showed to improve the
identification of correct conformations [45] and the dis-
crimination of active compounds from inactive ones in
docking experiments [46]. Then, in order for the improve-
ment of the results of docking protocol above mentioned a
clustering analysis was performed. The clustering analysis
was carried out by AuPosSOM [46] program (Automatic
analysis of Poses using SOM). This program performs the
clustering in three steps: (a) a Kohonen self-organizing map
(SOM) training phase using drug-protein contact descrip-
tors followed by (b) an unsupervised cluster analysis and
(c) a Newick file generation for results visualization as a

tree [46]. The docking poses are then analyzed and
classified automatically. The performance of clustering
analysis was evaluated to discriminate active compounds
from the inactive compounds by introducing, as control
group, 10, 20, 30 and 40 compounds with high binding
energy from inactive compounds set.

The AuPosSOM default parameters were used. These
parameters included: the Euclidean SOM which was trained
in two phases with the following parameters: map size 5×4,
exponential decrease of learning rate and radius; phase 1:
starting learning rate 0.2, starting radius 6, 1000 iterations;
phase 2: starting learning rate 0.02, starting radius 3, 10,000
iterations. The Newick file produced by AuPosSOM was
visualized as a tree with Seaview program [47]. The contact
analysis resulted from AuPosSOM was also graphically
examined using the software Chimera [48] to determine the
key interactions, and complementarity with residues of the
DNA-binding site. Thus, molecules are clustered according
to their similar binding mode to the protein target.
Potentially active and inactive compounds were then
clustered into different groups.

In order to assess likely inhibition mechanism of
potential inhibitors it was necessary to compare their
interactions in the DNA-binding site with those in the
HpNikR-DNA complex. However, to date there is no
structural basis for the HpNikR-DNA complex. To explore
this, prediction studies of putative residues involved in
HpNikR-DNA recognition were performed using the
TFmodeller [49] and DISPLAR [50] software. TFmodeller
compiles information about protein-DNA interfaces deposited
in the Protein Data Bank and uses it to model similar
interfaces and produce a list of residues interacting with
DNA related by homology modeling. DISPLAR employs a
neural network method which predicts residues contacting
with DNA molecules, if a particular structure of a protein

Rank ZINC code44 Vina binding energy (kcal/mol) Chemical structure Cluster

0 Positive control −6.3 (cut-off value) 7

1 ZINC09252524 −7.7 4

2 ZINC09282661 −7.3 7

3 ZINC08805862 −7.2 7

4 ZINC08806007 −7.2 6

5 ZINC12788043 −7.2 3

Table 1 The rank, ZINC code,
AutoDock Vina binding score,
chemical structure and cluster of
top-five potential inhibitors of
HpNikR, including the control
compound, identified using the
integrative protocol
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known to bind DNA is given. The input to the neural network
includes position-specific sequence profiles, solvent accessi-
bilities per each residue and its spatial neighbors. The neural
network is trained on known structures of protein-DNA
complexes and could provide accuracy of prediction over
80%.

Drug-protein interaction networks

STITCH [51, 52] (Search Tool for Interactions of Chemicals)
is a tool and database which includes a set of chemicals
derived from PubChem [53]. The relationship between
chemicals and proteins in STITCH are integrated from
pathway and experimental databases, as well as those
reported in the scientific literature. Using Openbabel
software [54], a SMILES file of lowest-binding energy per
compound was produced and later introduced into STITCH.
The parameters set in STITCH were as follows: organism=
Homo sapiens, active prediction methods as experiments,
neighborhood, gene fusion, co-occurrence, co-expression,
databases, and text-mining; confidence score of 0.4 (which
ranged from medium to high confidence interactions);
network depth of 1 (including only direct neighbors); and
custom limit for interactors shown of 500. The queries in
STITCH yield a list with match and Tanimoto score which
was associated with their set of chemicals. A Tanimoto score
higher than 0.6 was considered to be structurally similar to
that of the match in STITCH.

Results and discussion

The scoring functions used by the docking software are still
a major limiting factor in virtual screening process to find
out active compounds [55]. For this reason, we imple-
mented an integrative protocol that includes a structure-
based high-throughput virtual screening, drug-protein inter-
action network and contact activity relationship (CAR)
analyses for the discovery of inhibitors of HpNikR (Fig. 1).
The docking protocol identified a total of 276 small
molecules as potential inhibitors which showed lower
binding-energy values, and have the lowest value of the
binding-energy of -7.7 kcal mol−1 (Table 1). The com-
pounds with lowest binding-energy usually share particular
structural features such as the presence of three or four
heteroaromatic systems of five or six members. Seven of 276
potential inhibitors showed the rhodanine scaffold, thus they
could be considered as rhodanine derivatives. It is well known
that rhodanine derivatives show a wide range of biological
activities (i.e. antimicrobial, antifungal, antiviral, etc). In
addition, no significant correlation (r=-0.13, n=276, P>
0.05) was found between the binding energy of the potential
inhibitors and their molecular weight, indicating that

predicted affinity is due to the specificity and not to the size
of the molecule.

Bouvier et al. [46] have demonstrated that contact
clustering (CAR analysis) is able to discriminate active
compounds based only on protein-contact footprints calcu-
lation from the poses given by the docking software. Thus,
the CAR analysis of 276 initial potential inhibitors and
control group was performed. The analysis of CAR results
showed that initial potential inhibitors and control group
were distributed in nine clusters. The clustering tree and
protein-contact footprints of one representative hit per
cluster are shown in Fig. 2. Each one of the clusters
includes compounds that interact in a particular way with
residues of HpNikR. For example, the cluster 1 contains 42
compounds that interact predominantly with R37 of chain
A and R12, F13, S14 of chain A and B. The cluster 2

Fig. 1 Workflow diagram of the integrative computational protocol
for the discovery of HpNikR inhibitors
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contains 29 compounds that interact with R12 of A and B
chains, F13, S36, S38 predominantly of chain B, and the
interactions with S14 are dominated by chain A. The cluster
3 contains 10 compounds that interact with R12 of A and B
chains, R37 of chain A, and the interactions with F13, S14
and S16 are dominated by chain B. Interestingly, the cluster
9 corresponds to all compounds of the control group and 10
potential inhibitors (Fig. 2). In any case, the size of control
group (see the section of Methods) did not affect the results
of clustering analysis (data not shown). Hereinafter, we
referred to the control group of 40 compounds (Fig. 2). The
inspection of cluster 9 showed interactions with R12, F13,
and S14 residues, but these contacts were dominated by
chain A. It seems that the orientation towards chain A
showed by compounds of cluster 9 could minimize the
intermolecular forces in its interaction with the DNA-
binding site of NikR and, therefore it affect its biding
affinity. Moreover, the detailed inspection of interactions

showed that, with exception of cluster 9, the most
compounds of remaining eight clusters were able to mimic
key interactions between amino acids and bases from
protein-DNA complexes (it is also discussed further).
Hence, the 10 potential inhibitors that clustered in cluster
9 were removed from the list of potential inhibitors. This
result highlights the ability of CAR analysis to cluster the
compounds according to their binding mode to HpNikR.

In addition, important structural information could be
found in the analysis of atomic interactions. Contact
clustering allows identification of key residues implicated
in ligand binding [46]. These residues can be mapped onto
the target structure. However, to better understand the
mechanism of inhibition of potential inhibitors it is
necessary to know the structural basis of HpNikR-DNA
interaction. Further, the mechanisms behind the recognition
of DNA molecules by HpNikR are as yet unknown. For
this reason, prediction studies of putative residues involved

Fig. 2 Tree representation of
contact footprints clustering for
HpNikR structure-based virtual
screening analysis. Numbers on
the branches represent each of the
nine clusters. Boxes indicate the
representative compound in each
cluster. The contact footprints per
cluster are represented as follows:
R12A,Bmeans that Arg (R) in the
position 12 of chain A and B
interacts with the compounds of
respective cluster, and so on

J Mol Model (2011) 17:3075–3084 3079



in HpNikR-DNA recognition were performed. The analysis
with TFmodeller [49] predicted contacts in both chains for
R12, S14, and S16; DISPLAR [50] detected contacts for
I10, I11, R12, S14, S16, Q18, Y34, S35, S36, R37, S38,
E39, R42, and D43. The analysis on crystal structure of the
homologous complex (NikR-DNA) in E. coli [56] showed
that the two programs presented congruence on the
prediction of important residues in protein-DNA interac-
tion; hence, the differences in the results might be due to
the algorithms used by programs to perform predictions as
indicated in the section Materials and Methods. The
analyses showed that HpNikR DNA-contacting residues
are a mixture of charged and polar residues along with a
small number of hydrophobic residues which project

outside the surface. The analysis of the contacts between
the potential inhibitors and HpNikR showed that these
compounds interact frequently with DNA-interacting resi-
dues such as I11, R12, S14, F13, S16, R37, and S38. Most
interactions between these residues and the potential
inhibitors were driven mainly by hydrophobic forces
(Fig. 3). R12 and S14 could also play a role as strong
hydrogen bond donors, as demonstrated elsewhere [56].
Schreiter et al. [56]., reported a complex structure between
E. coli NikR and its operator DNA sequence suggesting
that R3 and T5 (R12 and S14 in HpNikR) interacts with the
nucleotide bases in the operator major groove. Schreiter
et al. [56], also showed that residues equivalent to R37 and
S38 in HpNikR frequently interact with the phosphate

Fig. 3 The interaction between
HpNikR residues and one
top-scoring compound
(ZINC09252524). The image
was produced with the program
Molecular Operating Environ-
ment (MOE) at www.chemcomp.
com [59]
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backbone of DNA. This kind of interactions is essential as
they serve to anchor the domain to DNA and correctly
orient the β-sheets within the major groove as shown
elsewhere [56]. In addition, we have found that R12 and
F13 residues frequently interact by pi-cation and pi-pi
interaction, respectively, with at least one of the hetero-
aromatic systems of potential inhibitors. Thus, R12 and F13
could be considered as a cationic and stacking center which
stabilizes interaction on the face of the hetearomatic rings.
It has been demonstrated [55–58] that these interactions are
essential for the neurotransmitters-receptor and DNA-
protein recognition process.

The physicochemical features of the potential inhibitors
could explain why they preferentially interact with those

residues, suggesting that they are able tomimic key interactions
between nucleotide bases and DNA binding domain of
HpNikR. A multiple structured-based alignment of NikR
sequences from the HpNikR and other eleven pathogenic
bacteria for humans (Fig. 4) revealed striking conservation at
the residues that interact with the 266 potential inhibitors (e.g.,
the hydrophobic residues in position 13, and charged residues
at positions 12, 14, 37, and 38); interestingly, some of these
residues are involved in recognition and stabilizing of the
DNA sequence [56]. Nevertheless, the HpNikR sequence has
some unique features such as the replacement of an aliphatic
side chain in position 13 by Phe. Overall, the identity between
all NikR sequences ranged from 78% to 94%. The high
conservation of the residues showed that the NikR of some

Fig. 4 Structure-based sequence
alignment of NikR DNA-binding
domain from H. pylori and other
human pathogenic bacteria. Red
boxes indicate residues that
interact with the 250 potential
inhibitors. HpNikR sequence is
highlighted in bold, and the
secondary structural elements are
shown above the sequence
alignment. The NikR-DNA
complex corresponds to the
structure reported by Schreiter
et al. [56], PDB ID: 2HZV and
red residues showed in the such
structure corresponds to those
in the red boxes. The multiple
sequence alignment was
constructed using Expresso
3D-Coffee [60]
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pathogenic bacteria could preserve similar interactions with
DNA molecules. Considering that NikR lacks of homologous
proteins in humans, the potential inhibitors identified herein
may also be useful in the rational development of novel drugs
to fight the diseases in humans caused by other pathogenic
bacteria of importance in public health such as Salmonella
typhy, Pseudomona aeruginosa and Shigella dysenteriae.

Drug chemotherapy may usually contribute to the
appearance of adverse effects after drug administration.
Mostly, the complexity of this phenomenon is attributable
to the interactions between the drug and unrelated target
proteins [57]. Interaction among target proteins is not
simple; conversely, the proteins interact within a complex
interconnected network. Therefore, the study of the properties
of drug-target interactions within the biological networks is of
paramount significance for a better understanding of adverse
effects associated with specific medications. Known and
predicted interactions of the top-binding energy compounds
with human proteins were explored using the STITCH server
[51]. The STITCH analysis of the 266 top-binding energy
compounds shows that 16 of these compounds have the
potential to interact with human proteins. For example, the
ZINC09025603 and ZINC09056854 compounds were struc-
turally similar to the CRA-013783/L-006235 compound,

which interacts with CtsB, CtsK and CtsS proteins. The
CtsB, CtsK and CtsS proteins are involved in osteoclastic
bone resorption and the removal of the invariant chain from
MHC class II molecules, respectively. The ZINC09234386
compound similar to T-0632 compound, which interacts with
Glp1R and CckaR proteins. The Glp1R protein activity is
mediated by G proteins which activate adenylyl cyclase. The
CckaR protein is involved in pancreatic growth and enzyme
secretion, smooth muscle contraction of the gall bladder and
stomach. Seven compounds were structurally similar to
tadalafil and five of them were placed in cluster 2 suggesting
that structural similarity obligates them to exhibit the same
binding mode to HpNikR. Tadalafil is a cGMP-specific
phosphodiesterase type 5 (PDE5) inhibitor, used for treating
erectile dysfunction and it has recently been approved for the
treatment of pulmonary arterial hypertension. Table 2 sum-
marizes the functional partners in STITCH, and Gene
Ontology [58] biological process annotations (GO terms)
for human proteins. These 16 compounds were removed
from the list of potential inhibitors because they were
considered to be promiscuous, ending with an enrichment
list of 250 specific compounds for HpNikR with minimal
adverse drug side effects (Table 1, and Supplemental
Material).

Table 2 The 16 promiscuous compounds removed from the list of potential inhibitors of HpNikR, because their interaction with human proteins

Compound STITCH51-52 match Human functional partners GO BP annotations58

ZINC09454661 GW9662: peroxisome proliferator-
activated receptor antagonist

Pga1, RxrA, Tff2, PparA,
PparG, RetN, Pga1
and Pprc1.

Fatty acid metabolism, lipid
transport, regulation of cell
proliferation and intracellular
signaling cascades

ZINC09056854 CRA-013783/L-006235: cathepsin K
inhibitor

CtsS, CtsK and CtsB Proteolysis
ZINC09025603

ZINC11398614 6-[(6-fluoro-4-quinolyl)methyl]-5-[(3R)-3-
hydroxypyrrolidine-1-carbonyl]-1-isobutyl-
3-methyl-thieno[4,5-e]pyrimidine-2,4-dione

Slc16A1 Transmembrane transport

ZINC01060675 AS-252424: PI3K gamma inhibitor Pik3cG G-protein coupled receptor
protein signaling pathway

ZINC02307440 STK169457 FasN Fatty acid biosynthesis

ZINC03051369 Flurazepam: a member of the benzodiazepines
and a long-acting depressor of the central
nervous system with sedative and hypnotic
effects

GabrA1, GabrB1, GabrA2,
GabrA3, GabrB3, GabrA4,
GabrA5, GabrA6, AbcB1
and GSR

Gamma-aminobutyric acid
signaling pathway,
Transmembrane transport and
cell redox homeostasis

ZINC09234386 T-0632: cholecystokinin (CCK)A-receptor
antagonist

CckaR and Glp1R Cellular response to hormone
stimulus and cAMP-mediating
signaling

ZINC04689725 STOCK2S-39368 FasN Fatty acid biosynthesis

ZINC02130463 Tadalafil: cGMP-specific
phosphodiesterase type 5 inhibitor

Pde5A, AKT1 and Cyp3a4 Signal transduction, apoptosis
and drug metabolic processZINC02091539

ZINC01845382

ZINC02094309

ZINC02122438

ZINC09328404

ZINC02092396
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Conclusions

The implementation of an integrative protocol to identify
potential inhibitors of HpNikR has been described. On the
basis of ADME/TOX filtering, a library of half a million
compounds was retrieved from the ZINC database. The
resulting filtered library was docked into the DNA binding
site of HpNikR to provide a list of 276 compounds ranked
according to AutoDock Vina scoring. The 276 compounds
were further screened by the analysis of contact clustering
to discriminate active conformations and by the analysis of
drug-protein interaction networks to remove the compounds
that could lead to side effects on humans after drug
administration. The resulting 250 compounds, which are
mainly composed of three or four heteroaromatic systems
and some rhodanine derivates, were finally identified as
potential inhibitors to HpNikR. Visual examination of
representative compounds of clusters and their interactions
with the amino acids on the DNA binding sites of HpNikR
were also determined. The experimental validations of
novel compounds presented herein are currently underway.
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